terça-feira, 1 de fevereiro de 2011

Modelos de Cor

Os modelos de cor derivados da experiência do dia-a-dia utilizados em artes visuais são subjectivos dado que dependem de múltiplos factores tais como o juízo pessoal e diferenças fisiológicas dos observadores. Estes modelos são ainda dependentes da situação concreta em que são realizadas as avaliações, a iluminação do objecto e a iluminação geral, o contexto em que a cor é avaliada e o tamanho da amostra de cor fazem variar a sua percepção.

Tendo em conta a teoria dos três estímulos, é lógico que qualquer modelo de cor deverá possuir três parâmetros. O problema essencial da modelação da cor está na definição de que grandezas devem ser associadas a cada um dos três parâmetros. O que dá origem à existência de vários sistemas de cor.
A luz emitida segundo um comprimento de onda preciso produz uma cor pura do espectro visível. Na realidade as fontes de luz emitem-na com uma determinada energia em muitos comprimentos de onda numa gama centrada à volta de um comprimento de onda dominante.

A teoria dos três estímulos parece indicar que bastará emitir três cores primárias que sejam detectáveis pelos três tipos de cones da retina para que se possam reproduzir todas as cores visíveis, variando simplesmente a proporção das quantidades de luz emitida por cada uma das fontes primárias. Estas proporções seriam determinadas pelas curvas de resposta característica de cada um dos três tipos de cones. Na prática, as três cores primárias emitidas, por exemplo, por cada um dos tubos de raios catódicos de um monitor (vermelho a 700 nm, verde a 546 nm e azul a 436 nm) não correspondem às cores detectadas pelos cones. Há então que modificar as funções peso aplicadas a cada uma das componentes primárias emitidas. Estas novas funções peso apresentam valores negativos em algumas gamas de comprimento. Isto significa que, com um monitor, não é possível reproduzir todos os comprimentos de onda de luz visível, isto é, não é possível reproduzir todas as cores do espectro visível pela combinação ponderada de luzes vermelha, verde e azul. Existem portanto cores que não podem ser simplesmente reproduzidas em monitores a cores pela adição ponderada das cores vermelha, verde e azul.

MODELO CIE
A incapacidade de modelos baseados na mistura de cores vermelhas, verdes a azuis poderem representar todas as cores do espectro visível levou a que a CIE (Commission Internationale de l’Éclairage) criasse em 1931 um modelo com três cores primárias denominadas X, Y e Z, que substituíam as cores primárias vermelha, verde e azul, e que possuíam funções peso (ou de mistura) de X, Y e Z, intrinsecamente positivas e tais que passasse a ser possível representar todas as cores do espectro visível. Estas funções x, y e z, são chamadas funções de ajustamento da cor ou CMF, Colour Matching Functions e foram calculadas a partir das funções de mistura para as cores vermelha, verde e azul e apresentam a particularidade de a função Y se encontrar ajustada à resposta combinada do olho humano em função do comprimento de onda.

Funções CMF X, Y, Z


Pela transformação de RGB para o espaço X, Y, Z é possível obter as quantidades de luz vermelha (700 nm), verde (546 nm) e azul (436 nm) necessárias para reproduzir qualquer cor do espectro visível a partir das cores primárias CIE. No entanto, nesta representação existem gamas de comprimento de onda em que as quantidades são negativas o que confirma a impossibilidade de os monitores a cores poderem reproduzir fielmente todas as cores do espectro visível.

Quantidades RGB necessárias para reproduzir todas as cores do espectro visível.
Note-se a existência de quantidades negativas


Luz detectada proveniente de uma superfície iluminada pelo iluminante D65 (a). A reflectividade da superfície (b) dá origem à luz reflectida (c) que, ponderada pelas funções CMF (d), resulta nos três estímulos detectados (e)

As funções CMF permitem também calcular a luz detectada pelos cones. A figura acima apresenta o exemplo do que acontece à luz emitida pelo iluminante D65 quando incide numa superfície não emissora e cuja reflectividade depende do comprimento de onda. A luz reflectida pela superfície apresenta um espectro muito diferente do espectro da luz nela incidente. Ponderando esta luz reflectida pelas funções CMF, obteremos então os valores dos três estímulos correspondentes à luz reflectida pela superfície.
Se A, B e C forem os pesos de cada uma das três cores primárias CIE, teremos que, para a cor D, será
D = AX + BY + CZ

O sub espaço contendo todas as cores visíveis está então localizado no octante em que as coordenadas A, B e C do espaço X,Y,Z são positivas, pois os valores das funções de ajuste são intrinsecamente positivas. Este sub espaço apresenta a forma de um cone com o vértice na origem do espaço X,Y,Z e uma secção em forma de ferradura.

Espaço de cor CIE

O modelo CIE define também uma luz branca de referência, o chamado iluminante C, que corresponde à luz solar quando emitida à temperatura de referência de 6774 K.

O diagrama CIE de cromaticidade representado na figura abaixo, apresenta todos os valores de cromaticidade para as cores visíveis dado que a todos os pontos com valores iguais de cromaticidade, mas de diferentes intensidades luminosas, corresponde um único ponto neste diagrama. As cores puras do espectro visível encontram-se localizadas sobre a parte curva do limite do diagrama, com a fonte de luz branca referência localizada no seu interior num ponto cujas coordenadas são, aproximadamente, de 1/3. As cores puras visíveis que não existem no espectro visível, como a cor magenta, encontram-se localizadas sobre o segmento de recta que une os extremos do arco em forma de ferradura.

Diagrama CIE de cromaticidade

O diagrama de cromaticidade apresenta algumas propriedades das quais a mais relevante é a sua linearidade. Assim, um segmento de recta que una os pontos representativos de duas cores representa todas as cores possíveis de obter pela mistura dessas duas cores em quaisquer proporções. As proporções de mistura correspondentes à cor de um ponto localizado sobre esse segmento podem ser calculadas a partir da chamada regra da alavanca. Quando essas duas cores forem o iluminante branco de referência e uma cor pura, o quociente entre a distância da cor resultante à cor pura e a distância da cor pura ao iluminante de referência corresponde à saturação da cor. O comprimento de onda dominante desta cor é o comprimento de onda característico da cor pura correspondente. Outra consequência da linearidade respeita à adição de duas cores de igual saturação localizadas sobre uma linha que contem o ponto representativo da cor branca e que se localizam de lados diferentes da linha relativamente à cor branca. A adição dessas duas cores produz luz branca e, portanto, as duas cores são complementares.
A linearidade do diagrama CIE de cromaticidade permite também a visualização das gamas de cor disponíveis nos dispositivos de saída gráfica. Com efeito, se representarmos no diagrama as três cores primárias típicas de dispositivos como monitores a cores, obtemos um triângulo completamente inscrito dentro do diagrama. Qualquer que seja o triângulo considerado, este nunca poderá compreender todos os pontos interiores do diagrama CIE de cromaticidade. Demonstra-se assim que os dispositivos de saída gráfica do tipo monitor a cores e baseados nas três cores primárias vermelha, verde e azul, nunca poderão reproduzir todas as cores visíveis. Por outro lado, comparando as gamas de monitores a cores com as gamas de impressoras a cores, verifica-se que estas últimas estão normalmente contidas dentro daquelas, o que significa que existem cores que é possível apresentar em monitores a cores, mas que não podem ser reproduzidas por impressoras a cores. Isto implica que as impressoras a cores não podem reproduzir uma imagem tão fielmente como um monitor a cores e, portanto, é necessário ou proceder à redução de cor na impressão para o papel ou utilizar uma gama de cores reduzida nos monitores para que exista um correspondência o mais fiel possível.
Um espaçamento uniforme de cores no espaço de percepção não corresponde a um espaçamento uniforme em termos de comprimento de onda. Para resolver este problema, o modelo CIE foi objecto de várias alterações, entre as quais as que resultaram no modelo CIE LUV de 1976.

MODELO RGB
O modelo RGB é um modelo de cor concebido com base nos dispositivos de saída gráfica com três cores primárias: vermelho, verde e azul. A sigla RGB deriva da junção das primeiras letras dos nomes destas cores primárias em língua inglesa: Red, Green e Blue. O modelo RGB descreve as cores como o resultado da adição das três cores primárias, cada uma delas com uma intensidade que pode variar entre 0 e 1. O valor 1 corresponde à intensidade máxima com que a cor pode ser apresentada e o valor 0 à intensidade mínima. A cor branca corresponde à representação simultânea das três cores primárias, todas à sua intensidade máxima, e a cor preta à cor que é obtida quando todas as cores primárias apresentam intensidade mínima (0). O modelo RGB está intimamente associado às superfícies emissoras de luz. É por esta razão que este modelo é o modelo quase universalmente empregue pelos equipamentos que manipulam a emissão de luz, tais como os monitores e os televisores a cores. Os filmes fotográficos e cinematográficos, e os registos em vídeo empregam também o modelo RGB no seu funcionamento. O modelo é omisso quanto ao que é uma cor primária pura, ou seja, não define qual o comprimento de onda a que corresponde cada uma das três cores primárias. Esta omissão tem consequências na reprodução da cor. Com efeito, verificam-se variações sensíveis de monitor para monitor e, no caso dos televisores, a publicidade menciona muitas vezes a expressão “cores mais naturais”.
Os três parâmetros do modelo RGB, as intensidades das três cores primárias do modelo, definem um espaço tridimensional com três direcções ortogonais (R, G e B). As cores deste espaço existem no sub espaço em que 0 ≤ (R,G,B) ≤ 1. Este sub espaço corresponde a um cubo de aresta unitária em que o vértice de coordenadas (0,0,0) representativo da cor negra coincide com a origem do espaço e o vértice representativo da cor branca corresponde ao ponto de coordenadas (1,1,1), tal como apresentado na figura.

Espaço de cor RGB

A cada uma das três cores primárias puras corresponde um dos vértices do cubo localizados sobre os eixos do espaço, em que apenas uma das coordenadas não é nula. As cores complementares principais (magenta, amarelo e cião) situam-se nos três vértices restantes e correspondem à adição de duas cores primárias. Os tons de cinzento correspondem aos pontos situados sobre a diagonal principal em que as três componentes apresentam a mesma intensidade.
A designação de cor complementar atribuída ao amarelo, cião e magenta provém da sua localização em vértices do cubo do espaço RGB de cor que são opostos aos vértices das cores primárias (vermelho para o cião, verde para o magenta e azul para o amarelo) e do facto da adição da cor complementar à respectiva cor primária resultar sempre a cor branca.
Tradicionalmente, as implementações do modelo RGB nos sistemas gráficos empregam valores inteiros entre 0 e 255 para exprimir o valor da intensidade de cada componente em vez de valores reais normalizados entre 0 e 1. Esta idiossincrasia teve origem no facto de o processamento de valores inteiros ter sido muito mais rápido do que o processamento de valores reais nos primeiros sistemas gráficos, além de que a notação com inteiros ser mais simples de escrever e apreender do que a notação com valores reais fraccionários. A discretização em 256 valores de intensidade é mais do que suficiente para o olho humano dado que este consegue distinguir entre um mínimo de 16 intensidades na zona do azul e um máximo de 23 intensidades na zona do amarelo.

MODELO CMY
O modelo CMY é um modelo de cor baseado nas cores complementares: cião, magenta e amarelo. A sigla CMY provém da junção da primeira letra dos nomes destas cores em língua inglesa: Cyan, Magenta e Yellow.
O modelo CMY tem por base os fenómenos que se verificam quando a luz incide em superfícies. Estas podem absorver, reflectir ou refractar a luz de forma desigual consoante o comprimento de onda. Quando uma luz branca incide sobre uma superfície, existem gamas de comprimento de onda em que a luz é absorvida pela superfície, em que a absorção depende de várias características das superfícies como natureza do material, rugosidade, forma da superfície, etc. A luz correspondente às gamas de comprimento de onda não absorvidas é, em geral, reflectida. A nossa percepção visual da cor da superfície é dada pela cor dessa luz reflectida. Assim, quando a luz natural incide numa superfície que absorve os comprimentos de onda na zona do vermelho, a luz reflectida não terá quaisquer componentes nessa gama e será constituída por apenas verdes e azuis, ou seja, o olho humano detectará a superfície como sendo da cor cião. De igual modo, o olho humano percepcionará uma superfície como sendo de cor vermelha se esta absorver comprimentos de onda situados na zona do verde e do azul.
Esta subtracção (por absorção) da luz em determinados comprimentos de onda é a razão pela qual o modelo CMY é também designado por modelo subtractivo da cor, em oposição ao modelo RGB que é designado por modelo aditivo da cor. As cores cião, magenta e amarelo são designadas por cores primárias complementares ou cores primárias subtractivas dada a forma como resultam da subtracção do, respectivamente, vermelho, verde e azul à cor branca.
O espaço CMY pode ser construído da mesma forma que é construído o espaço RGB. As coordenadas do espaço CMY passam a ser as cores primárias subtractivas e, tal como para o espaço RGB, as intensidades de cada componente estão normalizadas num intervalo entre 0 (ausência da componente) e 1 (componente na sua intensidade máxima). As cores ficarão então localizadas dentro de um sub espaço com a forma de um cubo, o cubo CMY.
Quando a intensidade de uma componente CMY é nula, a cor aditiva primária que a complementa não é absorvida e é totalmente reflectida. Se isto se passar com todas as componentes CMY, ou seja, a cor CMY tem como componentes (0,0,0) e isto significa que toda a luz branca incidente é reflectida e a superfície é percepcionada como sendo branca.
De modo semelhante, quando uma componente CMY tem a intensidade máxima (1), a cor aditiva primária complementar é totalmente absorvida. Quando todas as componentes CMY apresentarem intensidade máxima (1,1,1), as cores aditivas primárias complementares correspondentes serão totalmente absorvidas e, consequentemente, a superfície será percepcionada como sendo de cor preta, dado que não reflectirá qualquer luz.
Quando a luz reflectida por uma superfície apresenta a máxima intensidade para o cião (o vermelho é absorvido) e para a cor magenta (o verde é absorvido) e nula para o amarelo significa que a superfície tem cor azul. Resultados idênticos podem ser obtidos para as cores primárias aditivas verde e vermelho quando se consideram os pares magenta e amarelo e cião e amarelo, respectivamente. As cores primárias aditivas são então produzíveis pela adição de duas cores subtractivas primárias.

Espaço de cor CMY

O cubo CMY tem a cor branca (0,0,0) na origem e a cor negra (1,1,1) no vértice oposto. As cores primárias subtractivas estão localizadas no cubo CMY nos vértices deste cubo localizados sobre os eixos do espaço CMY, à distância de uma unidade da origem. Os restantes três vértices correspondem à localização das cores aditivas primárias.

As impressoras a cores empregam o modelo CMY por deposição sobre o papel de tintas correspondentes às cores primárias complementares. Tal como no modelo RGB, o modelo CMY também não define os comprimentos de onda das cores primárias pelo que a reprodução da cor está dependente das tintas empregues e poderá variar de impressora para impressora devido à dificuldade adicional da fabricação de tintas cujas cores correspondam exactamente às cores primárias subtractivas. Por outro lado, a deposição de três tintas correspondentes às cores primárias subtractivas não consegue produzir uma cor negra porque a absorção da gama de comprimentos de onda da luz incidente a ser absorvida por cada tinta não é total. A solução para este problema foi adicionar uma tinta de cor negra que permite obter uma cor negra muito mais correcta.

Adaptado de http://www.visual.pro.br/cg1/pdf/capitulocores.pdf

Sem comentários:

Enviar um comentário